High Tunnel Coverings Alter Crop Productivity and Microclimate of Tomato and Lettuce

Author:

Gude Kelly M.1,Pliakoni Eleni D.1,Cunningham Brianna2,Ayub Kanwal2,Kang Qing2,Rajashekar Channa B.3,Rivard Cary L.4

Affiliation:

1. Department of Horticulture and Natural Resources, 22201 W. Innovation Drive, Kansas State University, Olathe, KS 66061

2. Department of Statistics, 101 Dickens Hall, Kansas State University, 1116 Mid-Campus Drive N. Manhattan, KS 66505

3. Department of Horticulture and Natural Resources, 3036 Throckmorton PSC, 1712 Claflin Road, Manhattan, KS 66506

4. Department of Horticulture and Natural Resources, Olathe Horticulture Center, 35230 W. 135th Street, Kansas State University, Olathe, KS 66061

Abstract

The implementation of high tunnels has shown to increase marketability and/or yield of tomato (Solanum lycopersicum) and lettuce (Lactuca sativa) crops compared with open-field systems. These structures provide the opportunity to alter light intensity and spectral quality by using specific polyethylene (poly) films and/or shadecloth, which may affect microclimate and subsequent crop productivity. However, little is known about how specific high tunnel coverings affect these parameters. The overall goal of this study was to evaluate the impact of various high tunnel coverings on the microclimate and crop productivity of tomato and lettuce. The coverings included standard, ultraviolet (UV)-stabilized poly film (standard); diffuse poly (diffuse); full-spectrum clear poly (clear); UV-A/B blocking poly (block); standard + 55% shadecloth (shade); and removal of standard poly 2 weeks before initial harvest to simulate a movable tunnel (movable). Microclimate parameters that were observed included canopy and soil temperatures, canopy growing degree-days (GDD), and photosynthetic active radiation (PAR), and crop productivity included yield and net photosynthetic rate. Hybrid red ‘BHN 589’ tomatoes were grown during the summer, and red ‘New Red Fire’ and green ‘Two Star’ leaf lettuce were grown in both spring and fall in 2017 and 2018. Increased temperature, GDD, and PAR were observed during the spring and summer compared with the fall. The soil temperatures during the summer increased more under the clear covering compared with the others. For tomato, the shade produced lower total fruit yield and net photosynthetic rate (Pn) compared with the other treatments, which were similar (P < 0.001 and <0.001, respectively). The greatest yield was 7.39 kg/plant, which was produced under the clear covering. For red leaf lettuce grown in the spring, the plants under the clear, standard, and diffuse coverings had significantly greater yield than the movable and shade coverings (P < 0.001). The coverings had less effect on the yield during the fall lettuce trials, which may have been attributed to the decrease in PAR and environmental temperatures. The findings of this study suggest that high tunnel coverings affect both microclimate and yield of lettuce and tomato.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3