Cultivation and Fertility Practices Influence Hybrid Bermudagrass Recovery from Spring Dead Spot Damage

Author:

Hutchens Wendell J.1,Booth Jordan C.1,Goatley J. Michael1,McCall David S.1

Affiliation:

1. School of Plant and Environmental Sciences, Virginia Polytechnic Institute, 675 Old Glade Road, Blacksburg, VA 24060

Abstract

Spring dead spot (SDS), caused by Ophiosphaerella spp., is among the most damaging diseases to hybrid bermudagrass (Cynodon dactylon × transvaalensis) in areas where winter dormancy occurs. Management strategies that aid in turfgrass recovery from SDS damage have not been widely studied. An experiment was conducted in Blacksburg, VA, in 2019 and 2020, to determine the influence of various cultural practices on bermudagrass recovery from SDS damage. Fertility and cultivation were applied in the late spring/early summer, which is earlier than normal for cultivation practices for bermudagrass, to test their effectiveness in aiding bermudagrass recovery from SDS damage. The main effects of fertility and cultivation were arranged in a 2 × 3 factorial design with vertical mowing, solid-tine aerification, and no cultivation applied with urea (48.8 kg⋅ha−1 N) sprayed at trial initiation and 2 weeks later or without urea. Plots were assessed for the percent of SDS throughout the study. Data were analyzed as the percent change relative to the initial assessment to measure bermudagrass recovery. The main effect of fertility increased bermudagrass recovery from SDS damage in both 2019 and 2020. The main effects of vertical mowing and solid-tine aerification reduced bermudagrass recovery from SDS damage in 2020. These data suggest that two properly timed nitrogen fertilization applications at 48.8 kg⋅ha−1 optimized bermudagrass recovery from SDS damage, whereas late spring/early summer cultivation without fertility may inhibit bermudagrass recovery.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3