Plant Regeneration and an Analysis of Somaclonal Variation from TifEagle and TifSport Bermudagrass Cultivars

Author:

Goldman Jason J.,Hanna Wayne W.,Ozias-Akins Peggy

Abstract

`TifEagle' (2n = 3x = 27) hybrid bermudagrass [Cynodon dactylon (L.) Pers. (2n = 4x = 36) × Cynodon transvaalensis Burtt-Davy (2n = 2x = 18)] is an ultradwarf cultivar for greens, and `TifSport' (2n = 3x = 27) is a more versatile hybrid used on fairways, athletic fields, and lawns. To develope a transformation system and determine if somaclonal variation was present in regenerated plants, both cultivars were tested for their ability to produce embryogenic callus from which plants could be regenerated. Sliced nodes of both cultivars and immature inflorescences from `TifSport' were used as the explant sources. Cultures were initiated on Murashige and Skoog medium supplemented with 6.79 μm 2,4-D and 0.044 μm BA (`TifSport' and `TifEagle') or 6.79 μm 2,4-D plus 200 mg.L-1 casein hydrolysate (`TifSport'). In total, 51 plants were regenerated from callus of a single node of `TifEagle'. Nodes from `TifSport' did not produce embryogenic callus. In total, 29 plants were regenerated from callus of `TifSport' produced from immature inflorescences. These plants were grown in the field for at least one season, and 5-cm-diameter plugs were harvested, repotted in a greenhouse, and allowed to reestablish. Data on canopy height, leaf width, leaf length, and number of stolons were collected. Seven `TifEagle'-derived entries (14%) were not significantly different (α = 0.05) from `TifEagle' harvested from the breeder plot in Tifton, Ga., for all measured traits, and 41%, 24%, and 22% differed by one, two, or three measurements, respectively. Flow cytometry indicated that 33% (13 plants) of the `TifEagle' regenerants were hexaploid (2n = 6x = 54) and the rest remained triploid. One `TifSport' regenerant was significantly different (α = 0.05) for plant height.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3