Quantifying the Sorptive Behavior of Traditional Horticultural Substrate Components Based on Initial Hydraulic Conditioning

Author:

Bartley Paul C.1,Yap Ted C.2,Jackson Brian E.2,Fonteno William C.2,Boyette Michael D.3,Chaves-Cordoba Bernardo4

Affiliation:

1. Auburn University, Department of Horticulture, 101 Funchess Hall, Auburn University, AL 36849, USA

2. North Carolina State University, Department of Horticultural Science, 130 Kilgore Hall, 2721 Founders Drive, Raleigh, NC 27695-7609, USA

3. North Carolina State University, Department of Biological and Agricultural Engineering, Room 111, David S. Weaver Labs, Campus Box 7625, Raleigh, NC 27695, USA

4. Auburn University, College of Agriculture, 107 Comer Hall, Auburn University, AL 36849, USA

Abstract

The ability of a substrate component (organic or inorganic) to capture and retain water (hydration and wettability) is important to investigate and promote water-use–efficient practices. Many factors may play a role in the wettability of the material, including the processing of the material and its initial handling. The goal of this experiment was to determine the effect of moisture content (MC) on the sorptive behavior of substrates after an initial and secondary hydration cycle. Coir, peat, and aged pine bark were evaluated at a 33%, 50%, and 66% MC by weight. At all moisture levels, coir and bark were minimally affected by MC or the initial hydration cycle. Peat was the most vulnerable to changes in sorptive behavior as a result of wetting and drying cycles. After a wetting and drying cycle, the maximum volumetric water content of peat from surface irrigation was reduced 21.5% (volumetrically), more than three times any other treatment. The hydration efficiency of peat was improved when blended with as little as 15% coir. These experiments provide evidence that MC and initial handling of the substrate can lead to differences in initial water use efficiency.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Substrate Moisture and Temperature Effects on Limestone Reaction Rate in a Peat-Based Substrate;Communications in Soil Science and Plant Analysis;2024-08-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3