Hand and Mechanical Fruit-zone Leaf Removal at Prebloom and Fruit-set Was More Effective in Reducing Crop Yield than Reducing Bunch Rot in ‘Riesling’ Grapevines

Author:

Hed Bryan1,Centinari Michela2

Affiliation:

1. 1Department of Plant Pathology and Environmental Microbiology, Lake Erie Regional Grape Research and Extension Center, The Pennsylvania State University, North East, PA 16428

2. 2Department of Plant Science, The Pennsylvania State University, Tyson Building, University Park, PA 16802

Abstract

Fruit-zone leaf removal is typically applied in cool and humid regions to improve grape and wine quality, while reducing disease pressure. When fruit-zone leaf removal is applied early in the season, before bloom [early leaf removal (ELR)], it also reduces fruit-set, cluster compactness, and susceptibility to bunch rot, a complex disease that involves fungi (Botrytis cinerea, Aspergillus sp., Penicillium sp.) and bacteria (Acetobacter sp.). Over 2 years (2015–16), we tested whether ELR applied mechanically [mechanical defoliation at stage E-L 18 (MD-I)] would mimic the effects of a hand removal [hand defoliation of the first six basal leaves and laterals at stage E-L 18 (Coombe, 1995) (HD-I)] with respect to ‘Riesling’ (Vitis vinifera) production parameters, canopy density and cluster sunlight exposure, fruit composition, and bunch rot control. We also compared the effects of mechanical defoliation applied either at prebloom (MD-I) or at fruit-set [mechanical defoliation at stage E-L 27 (MD-II)]. In both years, fruit-zone leaf removal, regardless of method and timing, reduced yield, cluster weight, and berries per cluster, while maintaining fruit composition and bud fruitfulness as compared with nondefoliated vines (control, C). In 2015, HD-I vines had a lower percentage of clusters infected by bunch rot as compared with the C and MD-II vines. However, severity of bunch rot was low in all treatments, and there was not significant treatment effect on bunch rot severity in either year. ELR consistently shortened cluster length, offsetting much of the intended cluster loosening effect induced by a lower number of berries per cluster—that would have reduced bunch susceptibility to late seasons rots. Despite removing only half the leaf area of HD-I, MD-I successfully mimicked the canopy improving effects of HD-I in terms of fewer interior clusters and leaves, fewer cluster-shading layers, and greater light available to clusters and leaves as compared with C vines.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3