Irrigating Nursery Crops with Recycled Run-off: A Review of the Potential Impact of Pesticides on Plant Growth and Physiology

Author:

Poudyal Shital1,Cregg Bert M.12

Affiliation:

1. 1Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824

2. 2Department of Forestry, Michigan State University, 408 Wilson Road, East Lansing, MI 48824

Abstract

Interest in capturing and reusing runoff from irrigation and rainfall in container nurseries is increasing due to water scarcity and water use regulations. However, grower concerns related to contaminants in runoff water and other issues related to water safety are potential barriers to the adoption of water capture and reuse technologies. In this review, we discuss some of the key concerns associated with potential phytotoxicity from irrigating container nursery crops with recycled runoff. The concentration of pesticides in runoff water and retention ponds is orders of magnitude lower than that of typical crop application rates; therefore, the risk of pesticide phytotoxicity from irrigation with runoff water is relatively low. Nonetheless, some pesticides, particularly certain herbicides and insecticides, can potentially affect crops due to prolonged chronic exposure. Pesticides with high solubility, low organic adsorption coefficients, and long persistence have the greatest potential for crop impact because they are the most likely to be transported with runoff from container pads. The potential impact on plant growth or disruption of physiological processes differs among pesticides and sensitivity of individual crop plants. Growers can reduce risks associated with residual pesticides in recycled irrigation water by adopting best management practices (e.g., managing irrigation to reduce pesticide runoff, reducing pots spacing during pesticide application, use of vegetative filter strips) that reduce the contaminant load reaching containment basins as well as adopting remediation strategies that can reduce pesticide concentrations in recycled water.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3