Challenges of Establishing Native versus Exotic Status of Herbarium Specimens

Author:

Noyszewski Andrzej K.1,Anderson Neil O.1,Smith Alan G.1,Kilian Andrzej2,Dalbotten Diana3,Ito Emi4,Timm Anne5,Pellerin Holly6

Affiliation:

1. 1Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108

2. 2Diversity Arrays Technology, University of Canberra, Bruce, ACT 2617, Australia

3. 3St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55414

4. 4Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455

5. 5Urban Forests, Human Health, and Environmental Quality, U.S. Department of Agriculture, Forest Service, Northern Research Station, Baltimore, MD 21228

6. 6St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55414; and Fond du Lac Tribal and Community College, Cloquet, MN 55720

Abstract

In cases where invasive species are presumed to be strictly exotic, the discovery that the species is also native can be disconcerting for researchers and land managers responsible for eradicating an exotic invasive. Such is the case with reed canarygrass (Phalaris arundinacea), for which decades of misinformation led to the call for nationwide control of this species in the United States. However, native populations were first reported by LaVoie and then later confirmed by Casler with molecular analyses. This, coupled with the discovery by Anderson that this species has been used in weavings by Native Americans for centuries, also made the native forms of interest for protection. Identifying the native status of historic, herbarium specimens via molecular analyses is of great interest to determine localities of native populations for confirmation with extant specimens. Genetic-based methods describing DNA polymorphism of reed canary grass are not well developed. The goal of the presented research is to assess the utility of genomic DNA obtained from historic (herbaria) and extant (fresh) tissue of reed canarygrass and the application of using Diversity Arrays Technology sequencing low density for genetic population studies.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3