Numerical Simulation of the Fracture Propagation Mechanism during Supercritical Carbon Dioxide Fracturing in Shale Reservoirs

Author:

Li Fengxia123,Zhou Tong123ORCID,Wang Haibo123,He Jianming4,Shi Aiping123

Affiliation:

1. 1 State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development Beijing 100083 China

2. 2 State Energy Center for Shale Oil Research and Development Beijing 100083 China

3. 3 Sinopec Petroleum Exploration and Production Research Institute Beijing 100083 China sinopec.com

4. 4 Institute of Geology and Geophysics Chinese Academy of Sciences Beijing 100191 China english.igg.cas.cn

Abstract

Abstract To investigate the fracture propagation mechanism during supercritical CO2 fracturing in shale reservoirs, a numerical model was proposed based on the displacement discontinuity method. The Peng–Robinson equation was introduced to determine the variations in CO2 properties during the fracturing process. Considering natural fracture distribution in shale reservoirs, the fracture propagation mechanisms during supercritical CO2 fracturing in shale reservoirs under different horizontal stress differences and matrix permeabilities were analyzed. The influence of the proportion of CO2 preenergizing on fracture morphology was discussed. The results obtained via numerical simulation show that supercritical CO2 is beneficial to create a more complex fracture network by activating natural fractures under the same horizontal stress difference. CO2 easily penetrates into the matrix near the fracture surfaces, increasing reservoir energy. However, when the permeability of shale reservoirs exceeds 0.04×10−3 μm2, substantial filtration of CO2 into the reservoir matrix occurs near the well bore, limiting the activation of natural fractures around the fracture tip. A higher proportion of CO2 preenergizing during fracturing is conducive to improve the fracture complexity while reducing the fracture aperture.

Funder

Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production Technology

Publisher

GeoScienceWorld

Subject

Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3