Geophysical Evidence through a CSAMT Survey of the Deep Geological Structure at a Potential Radioactive Waste Site at Beishan, Gansu, China

Author:

An Zhiguo1,Di Qingyun1,Fu Changmin1,Xu Cheng1,Cheng Bo1

Affiliation:

1. Key Lab of Engineering Geomechanics, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, No. 19, Beitucheng Xilu Road, Chaoyang District, 100029, Beijing, China

Abstract

This paper describes a controlled-source audio-frequency magnetotellurics (CSAMT) survey conducted in August 2009 over a potential high-level radioactive waste (HLRW) disposal site in northwestern China. The site is primarily covered with well-developed metamorphic rocks. The purpose of the CSAMT survey was to map the outcropped faults to depth and identify any hidden faults or weakened zone in the subsurface. The site is located in the arid Beishan area, Gansu Province. Substantial challenges were encountered in acquiring quality electrical field data because of the highly resistive ground. Satisfactory electrode contact conditions were generally maintained by applying salt-saturated water to both the transmitting electrodes and the receiving electrodes. The excitation frequency ranges from 9,600 Hz to 1 Hz with a target depth of investigation of 1,000 m. The CSAMT data were processed in several steps. Low-pass filtering was applied to remove the static effect caused by the local electrical inhomogeneities near the ground surface. An optimum filter length was found through experiment to yield the maximum static effect reduction. The pre-processed data are inverted for geoelectrical cross sections using a 2-D inversion method. Inversion artifacts were suppressed by imposing a model smoothness constraint. The inversion reveals several important results. First, the inversion cross sections correctly recognized the fractures and deformation bands mapped at the surface. The cross sections also identified four new faults that were not observed in the geological survey. The inversion profiles suggested that the narrow factures and deformation bands observed along survey line 1 extend to a great depth. The profile helped identify a possible weak mineralization zone along survey line 2. Considering the regional tectonic stress direction, the lower resistivity zone suggests that the faults parallel to survey line 2 are subject to an extensional or transtensional force that produces a broad and broken alteration zone. Although subject to further drilling confirmation, these interpretation results greatly enhance the understanding of the deep geological hazards at the Beishan site.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

Reference20 articles.

1. Geophysical exploration for a long deep tunnel to divert water from the Yangtze to the Yellow River, China

2. Application of EM Methods for the Investigation of Qiyueshan Tunnel, China

3. Majer, E. Feighner, M. Johnson, L. Daley, T. Karageorgi, E. Lee, K.H. Kaelin, B. Williams, K. and McEvilly, T. 1996, Synthesis of borehole and surface geophysical studies at Yucca Mountain, Nevada and vicinity, Vol. I: Surface geophysics: Lawrence Berkeley National Laboratory Report 39319.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3