Study on the Bearing Characteristics and Application of the Filling Body in Original Roadway Filling and Nonpillar Driving

Author:

Shi Wenbao1ORCID,Li Yan2ORCID,Chang Jucai1ORCID

Affiliation:

1. Key Laboratory of Safe and Effective Coal Mining Ministry of Education School of Mining Engineering Anhui University of Science and Technology Huainan 232001 China aust.edu.cn

2. School of Mechanical and Electrical Engineering Huainan Normal University Huainan 232038 China hnnu.edu.cn

Abstract

Abstract Original roadway filling and nonpillar driving can effectively solve the difficulty facing mining replacement in the stope of deep mines. As the bearing characteristics of the filling body in the original roadway play a crucial role in the structural stability of the overlying strata, with the recovery and geological conditions of 62210 working face in Xinzhuangzi Coal Mine, Huainan Mining Group, China, as the background, this study analyzed the stability characteristics of the filling body in the original roadway through comprehensive research methods of theoretical analysis, laboratory tests, and onsite monitoring. The results disclose that the filling body in the original roadway should boost early strength, strong bearing capacity, and long-term weakening. When the water-cement ratios are 1 : 1, 1.5 : 1, 2 : 1, 2.5 : 1, and 3 : 1, the strengths of the filling body are 1.12 MPa, 0.93 MPa, 0.57 MPa, 0.33 MPa, and 0.21 MPa at 2 h and 5.63 MPa, 4.66 MPa, 2.87 MPa, 1.65 MPa, and 1.02 MPa at 48 h, respectively. The strengths surge by 5 times within 2 d on the whole and reach the maximum at about 7 d, i.e., 8.12 MPa, 6.91 MPa, 6.60 MPa, 3.95 MPa, and 2.20 MPa, respectively. As time goes, the water content of the filling body gradually decreases and the compressive strength plunges. This demonstrates that the rapid solidification material with a high water content can satisfy the requirements of the bearing characteristics of the original roadway filling body. With reference to numerical simulation and the data monitored onsite, it can be known that the filling body in the original roadway can support the roof effectively and control the surrounding rock deformation of newly excavated roadways in the lower section. The research results provide theoretical guidance for coal mining under similar geological conditions and serve as reference for safe and efficient coal mining.

Funder

School Level Scientific Research and Innovation Team of Huainan Normal University

Natural Science Foundation of Anhui Province

National Natural Science Foundation of China

Publisher

GeoScienceWorld

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3