Resolution of 3-D Electrical Resistivity Images from Inversions of 2-D Orthogonal Lines

Author:

Gharibi Mehran12,Bentley Laurence R.12

Affiliation:

1. Researcher, Department of Geology & Geophysics, University of Calgary, Calgary, Alberta T2N 1N4 Canada

2. Professor, Department of Geology & Geophysics, University of Calgary, Calgary, Alberta T2N 1N4 Canada

Abstract

Three-D electrical resistivity imaging (ERI) using sets of orthogonal of 2-D survey lines provides an efficient and cost effective tool for site characterization in environmental and engineering investigations. A 3-D survey design using sparse sets of lines reduces the survey time at the expense of the resolution. The effects of line spacing on the resolution of 3-D electrical resistivity images were investigated using numerical modeling with synthetic and field data for two standard configurations, dipole-dipole and Wenner arrays. Synthetic data studies indicate that dipole-dipole configuration produces a more accurate map of the subsurface than the Wenner configuration. A severely under-sampled 3-D survey could result in introducing small-scale shallow spurious artifacts at the surface of the resistivity model caused by the projection of the anomalies located in the deeper parts of the model. Results from inversion of the real and synthetic data showed that lines should be separated by no more than four electrode spacings and, if the shallow subsurface is important, by no more than two electrode spacings. The dipole-dipole array performs better than the Wenner array, but it requires more acquisition effort and is more sensitive to noise. These modeling results provide insight into quantitative survey designs that produce sufficient information to meet survey objective within a given field efforts.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3