Seepage Characteristics of a Low Permeability Sandstone Reservoir in Mobei Oilfield, Junggar Basin

Author:

Lisha Qi1ORCID,Zhibin Jiang1,Xiaowei Wang2,Jie Wang1,Chuanchuan Qian1

Affiliation:

1. Research Institute of Exploration and Development Xinjiang Oilfield Company PetroChina Karamay Xinjiang 834000 China petrochina.com.cn

2. Engineering Technology Department Xinjiang Oilfield Company PetroChina Karamay Xinjiang 834000 China petrochina.com.cn

Abstract

Abstract The microscopic pore structure characteristics and the oil-water two-phase seepage law in the low permeability sandstone reservoir in Mobei oilfield in Junggar Basin were analyzed through laboratory experiments. The results of mercury pressure, constant velocity mercury pressure, thin slice of casting, and CT scan analyses showed that the reservoir had strong microheterogeneity with the presence of local large channels. The large channel had a small volume but considerably contributed to the permeability, which played a crucial role in the reservoir seepage. The relative permeability curve showed that with the increase of water saturation, the relative permeability of the oil phase decreased rapidly; the water phase relative permeability of glutenite, gravel-bearing sandstone, and coarse sandstone increased slightly; and the water cut increased rapidly. The relative permeability of the water phase of medium and fine sandstone increased, the water cut increased rapidly, and the residual oil saturation was high. In the process of core displacement, on-line CT scanning monitoring showed that before the breakthrough of the water drive front, the oil saturation decreased greatly along the way. After the breakthrough of the water drive front, the water cut increased rapidly and directly entered the ultrahigh water cut stage. Owing to the serious heterogeneity of the micropore structure, the fingering phenomenon was obvious in the process of displacement.

Publisher

GeoScienceWorld

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3