GPR-Derived Sedimentary Architecture and Stratigraphy of Outburst Flood Sedimentation Within a Bedrock Valley System, Hraundalur, Iceland

Author:

Carrivick Jonathan L.123,Pringle Jamie K.123,Russell Andrew J.123,Cassidy Nigel J.123

Affiliation:

1. School of Geography, University of Leeds, Leeds, West Yorkshire, LS2 9JT, U.K.

2. Earth Sciences and Geography, Keele University, Keele, Staffordshire, ST5 5BG, U.K.

3. School of Geography, Politics and Sociology, Daysh Building, University of Newcastle, Newcastle Upon Tyne, Northumbria. NE1 7RU, U.K.

Abstract

Jökulhlaups and lahars are both types of outburst flood that commonly comprise a glacial meltwater and volcaniclastic sediment mix, and have discharges that are typically several orders of magnitude greater than perennial flows. Both types thus constitute a serious threat to life, property and infrastructure but are too powerful and too short-lived for direct measurements of flow characteristics to be made. Consequently a variety of indirect methods have been used to reconstruct flow properties, processes and mechanisms. Unfortunately, limited observations of sedimentary architecture and stratigraphic relationships are hampering our ability to discriminate fluvial magnitude-frequency regimes and fluvial styles of deposition, particularly those produced by rapidly-varied flows. This paper therefore uses Ground Penetrating Radar (GPR) to obtain quantitative data on subsurface sedimentary character of high-magnitude outburst flood sediments, including architecture and stratigraphy, from a bedrock-valley system in north-central Iceland. Basement pillow lava and subaerial lava flows are characterised by chaotic and hummocky GPR reflectors with a lack of coherent structure. They also feature an upper rough surface as evidenced by concentration of hyperbolae point sources. Unconsolidated sedimentary units are interpreted due to occur where laterally-persistent horizontal and sub horizontal reflectors occur. Deposition produced spatially diverse sediments due to rapidly-varied flow conditions. Observations include prograding and backfilling architecture, intercalated slope material and fluvial sediments, and multiphase sedimentary deposition. We suggest that these outburst flood sediments were initially deposited by traction load of coarse-grained material on prograding bedforms, and subsequently by drop-out from suspension of finer-grained material. The latter phase produced laterally extensive tabular sedimentary architectures that in-filled pre-existing topography and masked the complexity of bedrock forms beneath. Existing qualitative concepts of high-magnitude fluvial deposition within a topographically confined bedrock channel are therefore now refined with quantitative data on sediment architecture and thus on flow regimes.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

Reference46 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3