Variability in Groundwater Flow and Chemistry in the Houzhai Karst Basin, Guizhou Province, China

Author:

Barna Joshua M.1,Fryar Alan E.1,Cao Le2,Currens Benjamin J.1,Peng Tao2,Zhu Chen3

Affiliation:

1. Department of Earth and Environmental Sciences, University of Kentucky, 101 Slone Building, Lexington, KY 40506-0053

2. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China

3. Department of Earth and Atmospheric Sciences, Indiana University, 1001 E. Tenth Street, GY129, Bloomington, IN 47405-1405

Abstract

ABSTRACT Understanding how karst aquifers store and transmit water and contaminants is an ongoing problem in hydrogeology. Multiple flow paths and recharge heterogeneity contribute to the complexity of these systems. This study explored karst-conduit connectivity and water-chemistry variability within the Houzhai catchment in Guizhou Province, China. Artificial tracer tests were conducted during both the monsoon and dry seasons to understand temporal variability in connectivity and water velocity between karst features. Multiple flow paths through the catchment were activated during the monsoon season and partially abandoned during the dry season. Additionally, gradient reversals during monsoonal high-flow events and as a result of pumping were observed. Synoptic water samples from several karst features taken during both monsoon and dry seasons elucidated spatial and temporal variability within the catchment. Water residence time was generally longer during the dry season, and flow within the Houzhai catchment was determined to be temporally dependent. Time-series sampling at the outlet spring following a monsoonal storm event captured chemical variability and identified multiple flow paths. Overall, this study refines widely applicable methods for studying karst systems to this catchment and provides a foundation for future studies in similar settings.

Publisher

GeoScienceWorld

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3