Quantitative Elimination of Seismic Pseudofaults and Fine Analysis of True Faults Underlying Igneous Rocks of No-Well Areas: A Case Study of Shuntuoguole Uplift in Tarim Basin

Author:

Jiang Ziran1ORCID,Jiao Jian2ORCID,Qi Qiaomu13,Deng Xingyu4

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology 1 , Chengdu , China

2. Sinopec Tianranqi Company 2 , Beijing , China

3. College of Geophysics, Chengdu University of Technology 3 , Chengdu , China

4. College of Energy, Chengdu University of Technology 4 , Chengdu , China

Abstract

Abstract After multistage tectonic movement and evolution, large superimposed oil and gas basins generally developed many igneous rocks in the early rifting stages. The lithology and lithofacies of igneous rocks are complex, which is easy to lead to the distortion of the underlying migration velocity field and thus the response of seismic pseudofaults. Also, because of the obvious shielding and absorption effect of igneous rocks on seismic waves, the waveform quality of underlying strata is poor and the seismic response characteristics of faults are fuzzy. Currently, relevant studies have shown that the influence of igneous rock can be eliminated by the prestack depth migration with an accurate igneous rock velocity model. However, improving the accuracy of the velocity model needs to be corrected by well-logging data, resulting in poor applicability of the existing velocity modeling technology underlying igneous rocks without well, which is an obvious technical bottleneck. In this paper, the secondary strike-slip fault in Shuntuoguole low uplift of Tarim Basin, which has great oil and gas exploration potential but a very low degree of drilling, is selected as the research object. Aiming at difficult fault detection underlying igneous rocks caused by lack of drilling, the accuracy of fault seismic identification is improved by “interpretative fault preprocessing” and “fault sensitive attribute optimization.” In addition, through the “extreme hypothesis method” to maximize the complex migration velocity and simulate the underlying target layer distortion maximization, we realize the quantitative elimination of seismic pseudofaults. The practical application shows that this technology can determine the true and fake underlying faults quantitatively without establishing an accurate igneous rock velocity model. It is crucial not only for exploring oil and gas in the Tarim Basin’s secondary strike-slip faults but also for offering a method and technical guide for identifying faults in other basins affected by igneous rocks.

Publisher

GeoScienceWorld

Reference32 articles.

1. “Spatial and temporal characteristics of permian large igneous province in Tarim Basin,”;Chen H L;Xinjiang Petroleum Geology,2009

2. “How far is the seismic image correct?,”;Landa;The Leading Edge,1998

3. “Kirlin.3-D seismic attributes using a semblance-based coherency algorithm,”;Marfurt;Geophysics,1998

4. “Fault whispers:transmission distortions on prestack seismic reflection data,”;Hatchell;Geophysics,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3