Fecal genotyping to estimate small mammal population size, with a comparison to live mark-recapture estimates

Author:

Tim Bean William1ORCID,Statham Mark J.2ORCID,Treiber Madison1,Claflin William B.2,Fiehler Craig M.3,Sacks Benjamin N.2ORCID

Affiliation:

1. California Polytechnic State University

2. University of California

3. California Department of Fish and Wildlife

Abstract

Live capture-recapture is often considered the gold standard for estimating wildlife population size or density, but the approach can be limited by permitting requirements, required labor, welfare concerns, and biased estimates resulting from heterogeneity in individual behavior. Noninvasive genetic sampling (e.g., from fecal pellets) offers a powerful alternative approach, but this method’s success varies among taxa, with little research available on its use in rodents. Here, we addressed a series of questions to develop a noninvasive genetic sampling approach for the endangered giant kangaroo rat (Dipodomys ingens): (1) how quickly does DNA degrade in natural conditions, (2) how many pellets are required to recover a genotype, (3) how often do multiple individuals contaminate a pooled sample from a single sampling location, and (4) how do variable and parameter estimates from noninvasive genetic sampling compare to live-trapping mark-recapture estimates? We found that fecal pellets were successfully genotyped up to 9 days (estimated probability of recovery = 0.78) after exposure to hot, arid conditions, but that rate fell precipitously soon after. Although giant kangaroo rats are territorial, multiple individuals deposited fecal pellets at the same sampling locations; however, single pellets contained sufficient DNA to recover genotypes and to identify individuals, so contamination was not a problem for this approach. Capture probabilities were lower using noninvasive genetic sampling ( = 0.26, SE = 0.01) than live trapping ( = 0.40, SE = 0.06). Population estimates were generally similar using noninvasive genetic sampling, although they were quite a bit higher ( = 64 , = 38) on one grid. Noninvasive genetic sampling can overcome many of the limitations of live-trapping for small mammals, but the approach should be tested in additional taxa and systems to provide more generalizable recommendations for sampling schemes.

Publisher

California Fish and Wildlife Journal, California Department of Fish and Wildlife

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3