LangchainIQ: Intelligent Content and Query Processing

Author:

Ghane Sunil1,Sawant Roshan2,Supe Ganesh2,Pichad Chinmay2

Affiliation:

1. Assistant Professor, Department of Computer Engineering, Sardar Patel Institute of Technology, Mumbai, India

2. Department of Computer Engineering, Sardar Patel Institute of Technology, Mumbai, India

Abstract

Purpose: The purpose of this research is to introduce and evaluate a comprehensive framework called langchain(component of Large Language Model), designed to optimize data analysis and visualization processes across various business domains. The framework integrates advanced computational techniques with user-friendly interfaces to meet the growing demand for efficient information processing tools in research and industry settings. Design/Methodology/Approach: The framework consists of three primary components: PDF answering, CSV analytics, and data visualization using the LIDA library. Integration of advanced technologies such as the Mistral 7B model for language processing, Faiss for similarity search, and the LIDA library for data visualization. Detailed implementation steps include content processing, embedding using OpenAI embeddings, storage and retrieval using Faiss, and query handling using Mistral 7B. This involves breaking down PDF and CSV content into chunks, embedding them, and utilizing advanced algorithms for efficient data retrieval and visualization. Findings/Result: The fine-tuned Mistral 7B model significantly enhances data extraction speed compared to traditional models like Llama. Users can effectively query and extract specific information from PDFs and CSVs using natural language, facilitated by advanced AI models. The LIDA library automates the generation of insightful visualizations from processed data, enhancing data interpretation and decision-making. Originality/Value: Introducing langchain as a versatile framework that addresses the complexities of data analysis and visualization and it’s use in business analysis. Paper Type: Technical Research.

Publisher

Srinivas University

Reference30 articles.

1. Oguzhan Topsakal1, and Tahir Cetin Akinci (2023). Creating Large Language Model Applications Utilizing LangChain: A Primer on Developing LLM Apps Fast.

2. Bagiya Lakshmi S, Sanjjushri Varshini R, Rohith Mahadevan, Raja CSP Raman, (2023). Comparative Study and Framework for Automated Summariser Evaluation: LangChain and Hybrid Algorithms.

3. Rakha Asyrofi; Mutia Rahmi Dewi; Muhammad Irfan Lutfhi; Prasetyo Wibowo (2023). Systematic Literature Review Langchain Proposed.

4. Pedro Neira-Maldonado, Diego Quisi-Peralta (2024). Intelligent Educational Agent for Education Support Using Long Language Models Through Langchain.

5. Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas (2023). Mistral 7B.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3