A comparative investigation for identification of N-(4-dimethylamino 3,5-dinitrophenyl)maleimide

Author:

KARABOĞA Seda1ORCID,YILDIRIM Gürcan1ORCID

Affiliation:

1. BOLU ABANT IZZET BAYSAL UNIVERSITY

Abstract

This study has identified the characteristic behaviors of N-(4-dimethylamino 3,5-dinitrophenyl)maleimide molecule using ab initio Hartree-Fock (HF) and density functional theory (DFT) based on Becke’s three-parameter hybrid exchange functional combined with Lee-Yang-Parr non-local correlation function (HF/B3LYP and DFT/B3LYP) at 6-311G++(d,p) level of theory for the first time. On this basis, the optimized molecular structures, some thermodynamic features at 300 K, function groups of structures, charge distributions-dipole moments, molecular charge transfer regions, spectroscopic characteristic properties, vibrational frequencies, nuclear magnetic resonance chemical shifts of 13C-NMR and 1H-NMR spectra, and corresponding vibrational assignments have been investigated in detail. Comparisons between some experimental findings and theoretical results are performed to test the reliability of the calculation method preferred in the study. The comparison results in high correlation parameters such as R2 =0.976 and R2 =0.985 for the molecular structures and vibrational frequencies in the DFT and HF calculation levels, respectively. Moreover, the obtained vibrational frequencies and calculated results are in good agreement with the experimental data. Additionally, the simulations of highest/lowest occupied/unoccupied molecular orbital (HOMO and LUMO), molecular electrostatic potential (MEP), and electrostatic potential (ESP) maps have shown that there appear strong non-uniform intra-molecular charge distributions (ICT), electron engagements, lone pairs of electrons, π-π* conjugative effects based on the bond weakening, and intermolecular hydrogen bonding in the compound. Correspondingly, the molecule with the electrophilic reactive and nucleophilic regions has been noted to exhibit kinetical chemical stability. All the discussions have been confirmed by means of the findings of optimized molecular structures and vibrational frequencies belonging to the molecule.

Publisher

Gaziosmanpasa University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3