Molecular Targets of Phyto-bioactive Compounds in Female Reproductive System of Mammals: A Review

Author:

Kumar B. Sampath,Manasa V.,Ramesh H.S.,Nandi S.,Kumar V. Girish

Abstract

Phytochemicals present in the plants are divided into primary (Alcohol Amino acids, nucleotides. etc) and secondary metabolites (Alkaloids, Saponins etc.). Carotenoids (reduces reactive oxygen species formation, decreases apoptotic cells, restoration of actin capping expression proteins etc.), Phenolics (inhibits extracellular signal-regulated kinase signalling pathway), Isoflavones (inhibits tyrosine kinase pathway) and alkaloids (downregulation of vascular endothelial growth factor, tumor necrosis factor-alpha and hypoxia-inducible factor 1-alpha messengers) are the major phytochemicals, having the potential effects towards ovarian function. Likewise, bioactive compounds are the chemicals that can interact with certain components of live tissue to exert their various effects (antioxidant, antineoplastic, receptor inhibition, gene expression etc.) respective to female fertility. Similarly, bioactive compounds: Kaempferol [phosphatidylinositol -3- kinase (PI3K)/protein kinase B (Akt) pathway], Quercetin (controlling the release of 17β-estradiol etc.), Myricetin (PI3K/Akt and MAPK signalling pathway), Galngin (inhibition of angiogenesis via decreasing the VEGF and p-Akt) and Resveratrol (regulation of Foxo3a and SIRT1 genes etc.) shows its effects by targeting different molecules and/or pathways at the ovarian microenvironment. However, Genistein (binding to estrogen receptors: ESRα and ESRβ etc.) and Diadzein (disrupting the endocrines etc.) emphatically interfere with the ovarian functions. Besides this, molecular effects exerted by these phyto-bioactive compounds on the in vivo and/or in vitro ovarian culture systems entirely depend on their dosage: Kaempferol @10 μM increased the primordial follicle activation, Quercetin @4 µM improved the quality of oocytes whereas @8 µM reduced the quality), Resveratrol @ 2 µM increased the blastocyst formation, Myricetin @ 100 mg/kg/day feeding in rats induced estrogenic activity, Genistein, feeding in female mice @ 500 and 1000ppm increased the gestation time and Diazdein causes the inhibition of 3-hydroxysteroid dehydrogenase at 40 µM doses. The assessment was done via the systemic collection of literature from sources such as newspapers, conference papers, journals, theory and dissertation articles, electronic databases, manuals, encyclopedia and annual reviews, as well as e-books and reporting. As a result, the preceding discussion focuses on the key phyto-bioactive compounds and their molecular targets in female fertility. This will aid in the successful and secure application of plant bioactive compounds in the field of female reproductive health.

Publisher

Agricultural Research Communication Center

Subject

General Veterinary,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3