FOURTH-ORDER STRAIN GRADIENT BAR-SUBSTRATE MODEL WITH NONLOCAL AND SURFACE EFFECTS FOR THE ANALYSIS OF NANOWIRES EMBEDDED IN SUBSTRATE MEDIA

Author:

Sae-Long Worathep,Limkatanyu Suchart,Sukontasukkul Piti,Damrongwiriyanupap Nattapong,Rungamornrat Jaroon,Prachasaree Woraphot

Abstract

This paper presents a new analytical bar-substrate model for the analysis of an isotropic and homogeneous nanowire embedded in an elastic substrate. A fourth-order strain gradient model based on a thermodynamic approach is employed to represent the small-scale effect (nonlocal effect) while the Gurtin-Murdoch continuum model based on the surface elastic theory is used to account for the size-dependent effect (surface energy effect). The proposed model is derived from the virtual displacement principle, leading to the governing differential equations and its associated natural boundary conditions. The analytical solutions of the sixth-order governing differential equation for the nanowire-substrate element are provided, and were employed in numerical simulations. Two numerical simulations are used to demonstrate the performance and to investigate the characteristics of the fourth-order strain gradient model on nanowire responses, when compared to the classical model and the second-order strain gradient model. The first simulation investigates the influences of nonlocal and surface effects on the responses of a nanowire embedded in an elastic substrate, while the second simulation study assessed the sensitivity of system stiffness on parameters in the nanowire-substrate model.

Publisher

University of Nis

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3