EDGE DETECTION PARAMETER OPTIMIZATION BASED ON THE GENETIC ALGORITHM FOR RAIL TRACK DETECTION

Author:

Pavlović Milan,Nikolić Vlastimir,Simonović Miloš,Mitrović Vladimir,Ćirić Ivan

Abstract

One of the most important parameters in an edge detection process is setting up the proper threshold value. However, that parameter can be different for almost each image, especially for infrared (IR) images. Traditional edge detectors cannot set it adaptively, so they are not very robust. This paper presents optimization of the edge detection parameter, i.e. threshold values for the Canny edge detector, based on the genetic algorithm for rail track detection with respect to minimal value of detection error. First, determination of the optimal high threshold value is performed, and the low threshold value is calculated based on the well-known method. However, detection results were not satisfactory so that, further on, the determination of optimal low and high threshold values is done. Efficiency of the developed method is tested on set of IR images, captured under night-time conditions. The results showed that quality detection is better and the detection error is smaller in the case of determination of both threshold values of the Canny edge detector.

Publisher

University of Nis

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3