Abstract
This paper builds upon the results of a recent study which illustrates how the Fast Fourier Transformation (FFT) can be used to accelerate the Boundary Element Method (BEM) for arbitrary shapes. In the present work, we further deepen this understanding and focus especially on implementation details in order to calculate the boundary integrals with the FFT. Different numerical techniques are compared for an exemplary shape. Also, additions to the concept are mentioned such as the introduction of a high-resolution grid close to the boundary and a low-resolution grid farther away.
Subject
Industrial and Manufacturing Engineering,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献