FORCED CONVECTION DRYING OF INDIAN GROUNDNUT: AN EXPERIMENTAL STUDY

Author:

Sahdev Ravinder Kumar,Kumar Mahesh,Dhingra Ashwani Kumar

Abstract

In this paper, convective and evaporative heat transfer coefficients of the Indian groundnut were computed under indoor forced convection drying (IFCD) mode. The groundnuts were dried as a single thin layer with the help of a laboratory dryer till the optimum safe moisture storage level of 8 – 10%. The experimental data were used to determine the values of experimental constants C and n in the Nusselt number expression by a simple linear regression analysis and consequently, the convective heat transfer coefficient (CHTC) was determined. The values of CHTC were used to calculate the evaporative heat transfer coefficient (EHTC). The average values of CHTC and EHTC were found to be 2.48 W/m2 oC and 35.08 W/m2 oC, respectively. The experimental error in terms of percent uncertainty was also estimated. The experimental error in terms of percent uncertainty was found to be 42.55%. The error bars for convective and evaporative heat transfer coefficients are also shown for the groundnut drying under IFCD condition.

Publisher

University of Nis

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental ginger drying by a novel mixed-mode vertical solar dryer under partial and fully loaded conditions;Innovative Food Science & Emerging Technologies;2024-07

2. Indoor Forced Convection Drying of Giloy Stem: An Experimental Investigation;2024 3rd International Conference on Computational Modelling, Simulation and Optimization (ICCMSO);2024-06-14

3. Recent Advances in the Drying Process of Grains;Food Engineering Reviews;2023-02-08

4. Convective and evaporative heat transfer coefficients during drying of ivy gourd under natural and forced convection solar dryer;Environmental Science and Pollution Research;2022-09-08

5. Experimental study of solar drying of multi‐layer peanuts and development of drying model;Journal of Food Processing and Preservation;2022-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3