The Experimental Evaluation of Simple Bidirectional DC/DC Converter with Snubber Compensation for Electric Vehicle Application

Author:

Fuada Syifaul, ,Lawu Braham Lawas

Abstract

This research discusses the implementation of a buck-boost converter which is also known as a Bidirectional DC/DC Converter (BDC) in electric vehicles with a specific focus on electric All-Terrain Vehicles (ATV). The BDC circuit was used to integrate the main battery of the ATV (Li-Po) with the secondary battery (a 25V max./8 Farad Supercapacitor bank). This is to ensure the main battery of the ATV motor safer from unstable output load currents through the charging and discharging mechanism facilitated by BDC in order to ensure it has a longer lifetime. This discussion is more focused on the charging mechanism which occurs when the BDC is in buck mode (36V to 18 V). Meanwhile, the DC motor was used as the load inductor in this BDC circuit. It is also important to note that an interruption in the current flowing either due to a switch or other components has the ability to cause a voltage or current spike in the semiconductor switch component. Therefore, a special circuit was required to be connected to the main circuit to reduce interruption and also indicates the role of the snubber circuit in reducing the spike. This paper is more highlighted on voltage spike reduction. Moreover, LTSpice simulation was applied to verify the BDC circuit design, and the results obtained were compared with a real laboratory measurement based on the ability to change the Duty Cycle on the Vout of the BDC circuit for the charging mechanism. The determination of the desired Vout was followed by a change in the parameters of the BDC circuit such as input voltage, inductor value, switching frequency, duty cycle, and power supply configuration to determine their impact on the Vout of BDC, Spike, and MOSFET's temperature. The experiments showed that the Snubber circuit was able to compensate for voltage fluctuations in the MOSFET.

Publisher

EJournal Publishing

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Instrumentation

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synchronization Mechanism Test and Evaluation Method for New Energy Converters;2024 IEEE 2nd International Conference on Power Science and Technology (ICPST);2024-05-09

2. Research on a Novel Method for Grounding Fault Location in the HVDC Inverter Based on Temporal Characteristics of Electrical Quantities;2024 IEEE 2nd International Conference on Power Science and Technology (ICPST);2024-05-09

3. Design of a Compact High-Frequency Boost Half-Bridge DC-DC Converter Based on SiC Devices;2024 IEEE 2nd International Conference on Power Science and Technology (ICPST);2024-05-09

4. Research on the Pollutant Reduction Control for P2.5 Hybrid Electric Vehicles;SAE Technical Paper Series;2024-04-09

5. Single Phase Charging Method in Electric Vehicles with Resistance and Capacitor Value Setting on DC-DC Boost Converter;2024 IEEE International Conference on Artificial Intelligence and Mechatronics Systems (AIMS);2024-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3