Affiliation:
1. School of Biomedical Sciences UNSW Sydney Kensington NSW Australia
Abstract
Malaria remains a huge burden on global public health. Annually there are more than 200 million cases with > 600,000 deaths worldwide, the vast majority of which occur within Sub‐Saharan Africa (WHO; World Malaria Report, 2021). Malaria disease is the consequence of infection by a protozoan parasite from the genus Plasmodium with most morbidity and mortality caused by P. falciparum. With rates of infection plateauing and rebounding in some areas (in particular, as a result of the disruption caused by the COVID‐19 pandemic), there have been increasing calls for new initiatives that can reduce malaria incidence towards local elimination or the hoped for goal of global eradication. In 2021, the World Health Organisation approved the first malaria vaccine RTS,S/AS01 (also called Mosquirix™), indicating it to be safe for use in young children and advocating its integration into routine immunisation programmes. Approval of this vaccine clearly represents a major landmark in global efforts towards malaria control and eradication aspirations. RTS,S modest efficacy, however, points at the need to better understand immune responses to the parasite if we hope to design next generation malaria vaccines with increased potency.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献