Inhibition of SARS‐CoV‐2‐mediated thromboinflammation by CLEC2.Fc

Author:

Sung Pei‐Shan1ORCID,Sun Cheng‐Pu2,Tao Mi‐Hua2,Hsieh Shie‐Liang1345ORCID

Affiliation:

1. Genomics Research Center Academia Sinica Taipei Taiwan

2. Institute of Biomedical Sciences Academia Sinica Taipei Taiwan

3. Immunology Research Center National Health Research Institutes Zhunan Taiwan

4. Institute of Clinical Medicine National Yang Ming Chiao Tung University Taipei Taiwan

5. Department of Medical Research Taipei Veterans General Hospital Taipei Taiwan

Abstract

AbstractThromboinflammation is the major cause of morbidity and mortality in COVID‐19 patients, and post‐mortem examination demonstrates the presence of platelet‐rich thrombi and microangiopathy in visceral organs. Moreover, persistent microclots were detected in both acute COVID‐19 and long COVID plasma samples. However, the molecular mechanism of SARS‐CoV‐2‐induced thromboinflammation is still unclear. We found that the spleen tyrosine kinase (Syk)‐coupled C‐type lectin member 2 (CLEC2), which was highly expressed in platelets and alveolar macrophages, interacted with the receptor‐binding domain (RBD) of SARS‐CoV‐2 spike protein (SARS‐CoV‐2 RBD) directly. Unlike the thread‐like NETs, SARS‐CoV‐2‐induced aggregated NET formation in the presence of wild‐type (WT), but not CLEC2‐deficient platelets. Furthermore, SARS‐CoV‐2 spike pseudotyped lentivirus was able to induce NET formation via CLEC2, indicating SARS‐CoV‐2 RBD engaged CLEC2 to activate platelets to enhance NET formation. Administration of CLEC2.Fc inhibited SARS‐CoV‐2‐induced NET formation and thromboinflammation in AAV‐ACE2‐infected mice. Thus, CLEC2 is a novel pattern recognition receptor for SARS‐CoV‐2, and CLEC2.Fc and may become a promising therapeutic agent to inhibit SARS‐CoV‐2‐induced thromboinflammation and reduced the risk of post‐acute sequelae of COVID‐19 (PASC) in the future.

Funder

Anatomical Society

Publisher

Springer Science and Business Media LLC

Subject

Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3