Analyzing the impact of precision farming on the yield of grain crops based on production functions

Author:

GENERALOV Ivan G.1ORCID

Affiliation:

1. Nizhny Novgorod State University of Engineering and Economics (NGIEU)

Abstract

Subject. The article discusses Russia’s food security, problems of introducing modern models of agricultural machinery, development of precision farming. Objectives. The aim is to determine the degree of the impact of digitalization of grain production on its economic efficiency, develop an algorithm to assess the impact of precision farming on the yield of grain crops. Methods. The study employs the modified Cobb–Douglas production function, supplemented by the "specific weight of crops cultivated by using elements of precision farming" variable. Results. The evaluation of the production function parameters established that an increase in the share of crops treated by using elements of precision farming by 1% in agricultural organizations of the Nizhny Novgorod Oblast contributes to an increase in the yield of grain crops by more than two hundred kilograms per hectare on average, and the average yield by 13.7% is formed due to the effect of the use of precision farming technologies. Conclusions. The developed methodological algorithm for assessing the digital transformation of grain production is important for strategic development of the agricultural industry as a whole.

Publisher

Publishing House Finance and Credit

Reference18 articles.

1. Rudoi E.V., Petukhova M.S., Ryumkin S.V. et al. Nauchno-obosnovannyi prognoz razvitiya tochnogo zemledeliya v Rossii: monografiya [Scientifically based forecast of the development of precision farming in Russia: a monograph]. Novosibirsk, Zolotoi kolos Publ., 2021, 138 p.

2. Baryshnikova N.A. [World agriculture in the context of digital transformation: Prospects for achieving global food security]. Vestnik Saratovskogo gosudarstvennogo sotsial'no-ekonomicheskogo universiteta = Vestnik of Saratov State Socio-Economic University, 2019, no. 5, pp. 28–33. URL: Link (In Russ.)

3. Gorlov I.F., Fedotova G.V., Slozhenkina M.I. et al. [Digital transformation in agriculture]. Agrarno-pishchevye innovatsii = Agrarian-and-Food Innovations, 2019, no. 1, pp. 28–35. (In Russ.) URL: Link

4. Zhukova M.A., Ulez'ko A.V. [The factors limiting the opportunities for initiation of processes of digital transformation in agriculture]. Finansovaya ekonomika = Financial Economy, 2019, no. 5, pp. 456–459. (In Russ.)

5. Sandu I.S., Nechaev V.I., Voiku I.P. [State support for digital transformation of agriculture in the region: Methodological approach]. Ekonomika sel'skokhozyaistvennykh i pererabatyvayushchikh predpriyatii = Economy of Agricultural and Processing Enterprises, 2019, no. 12, pp. 66–70. (In Russ.)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3