A New Reliability Rock Mass Classification Method Based on Least Squares Support Vector Machine Optimized by Bacterial Foraging Optimization Algorithm

Author:

Zheng S.1,Jiang A. N.1ORCID,Yang X. R.1,Luo G. C.2

Affiliation:

1. Highway and Bridge Research Institute, College of Transportation Engineering, Dalian Maritime University, Dalian, China

2. China Railway Construction Bridge Engineering Bureau Group Co., Ltd., Tianjin, China

Abstract

Classification of the surrounding rock is the basis of tunnel design and construction. However, conventional classification methods do not allow dynamic tunnel construction adjustments because they are time-consuming and do not consider the randomness of rock mass. This paper presents a new reliability rock mass classification method based on a least squares support vector machine (LSSVM) optimized by a bacterial foraging optimization algorithm (BFOA). The LSSVM is adopted to express the implicit relationship between classification indicators and rock mass grades, which is a response surface function for reliability evaluation. LSSVM parameters were optimized by the BFOA to form a hybrid BFOA-LSSVM algorithm. Using geological prediction and rock strength resilience results as classification indicators, samples were developed to train the LSSVM model using the hybrid algorithm. The Monte Carlo sampling method of reliability classification was implemented and applied to the Suqiao tunnel at the Puyan highway in the Fujian province of China; the influence of parameters on the performance of the algorithm is discussed. The results indicate that the new method is feasible for tunnel engineering; it can improve the classification accuracy of surrounding rock exhibiting randomness, to provide an effective means of classifying surrounding rock in the dynamic design of tunnel construction.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3