Water Sorption and Mechanical Properties of Starch/Chitosan Nanoparticle Films

Author:

Othman Siti H.12ORCID,Kechik Nurul R. A.1ORCID,Shapi’i Ruzanna A.1,Talib Rosnita A.1ORCID,Tawakkal Intan S. M. A.1ORCID

Affiliation:

1. Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

2. Materials Processing and Technology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Abstract

The usage of biopolymer as food packaging material has been limited due to high water sorption and poor mechanical properties of the biopolymer. Thus, this study is aimed at improving the water sorption and mechanical properties of biopolymer particularly starch films by incorporation of a natural filler particularly chitosan nanoparticle (CNP) and investigating the properties of starch/CNP films at different storage conditions (relative humidity: 23, 50, and 75%; temperature: 4, 30, and 40°C). The water sorption behavior and isotherms of the films were investigated by fitting the water sorption data to the Peleg model and Guggenheim, Anderson, and de Boer model. Both the models were well fitted to the experimental data, thus proving the reliability of water sorption behavior prediction. It was found that different storage conditions of the films significantly affected the mechanical properties of the films due to the sensitivity of the films towards moisture. Water sorption and mechanical properties of the films were best improved at relative humidity of 23% and temperature of 30°C. The water sorption and mechanical properties of the films are worth to be investigated because the properties affected the stability, shelf life, and application of the films in the food packaging field.

Funder

Ministry of Higher Education, Malaysia

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3