Affiliation:
1. School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
Abstract
Recently, 3D model retrieval based on views has become a research hotspot. In this method, 3D models are represented as a collection of 2D projective views, which allows deep learning techniques to be used for 3D model classification and retrieval. However, current methods need improvements in both accuracy and efficiency. To solve these problems, we propose a new 3D model retrieval method, which includes index building and model retrieval. In the index building stage, 3D models in library are projected to generate a large number of views, and then representative views are selected and input into a well-learned convolutional neural network (CNN) to extract features. Next, the features are organized according to their labels to build indexes. In this stage, the views used for representing 3D models are reduced substantially on the premise of keeping enough information of 3D models. This method reduces the number of similarity matching by 87.8%. In retrieval, the 2D views of the input model are classified into a category with the CNN and voting algorithm, and then only the features of one category rather than all categories are chosen to perform similarity matching. In this way, the searching space for retrieval is reduced. In addition, the number of used views for retrieval is gradually increased. Once there is enough evidence to determine a 3D model, the retrieval process will be terminated ahead of time. The variable view matching method further reduces the number of similarity matching by 21.4%. Experiments on the rigid 3D model datasets ModelNet10 and ModelNet40 and the nonrigid 3D model dataset McGill10 show that the proposed method has achieved retrieval accuracy rates of 94%, 92%, and 100%, respectively.
Funder
National Natural Science Foundation of China
Subject
Multidisciplinary,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献