An Efficient 3D Model Retrieval Method Based on Convolutional Neural Network

Author:

Ding Bo1,Tang Lei1ORCID,He Yong-jun1ORCID

Affiliation:

1. School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China

Abstract

Recently, 3D model retrieval based on views has become a research hotspot. In this method, 3D models are represented as a collection of 2D projective views, which allows deep learning techniques to be used for 3D model classification and retrieval. However, current methods need improvements in both accuracy and efficiency. To solve these problems, we propose a new 3D model retrieval method, which includes index building and model retrieval. In the index building stage, 3D models in library are projected to generate a large number of views, and then representative views are selected and input into a well-learned convolutional neural network (CNN) to extract features. Next, the features are organized according to their labels to build indexes. In this stage, the views used for representing 3D models are reduced substantially on the premise of keeping enough information of 3D models. This method reduces the number of similarity matching by 87.8%. In retrieval, the 2D views of the input model are classified into a category with the CNN and voting algorithm, and then only the features of one category rather than all categories are chosen to perform similarity matching. In this way, the searching space for retrieval is reduced. In addition, the number of used views for retrieval is gradually increased. Once there is enough evidence to determine a 3D model, the retrieval process will be terminated ahead of time. The variable view matching method further reduces the number of similarity matching by 21.4%. Experiments on the rigid 3D model datasets ModelNet10 and ModelNet40 and the nonrigid 3D model dataset McGill10 show that the proposed method has achieved retrieval accuracy rates of 94%, 92%, and 100%, respectively.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3