A Modified ResNeXt for Android Malware Identification and Classification

Author:

Albahar Marwan Ali1ORCID,ElSayed Mahmoud Said2,Jurcut Anca2

Affiliation:

1. School of Computer Science, Umm Al-Qura University, Mecca, Saudi Arabia

2. School of Computer Science, University College Dublin, Belfield, Dublin, Ireland

Abstract

It is critical to successfully identify, mitigate, and fight against Android malware assaults, since Android malware has long been a significant threat to the security of Android applications. Identifying and categorizing dangerous applications into categories that are similar to one another are especially important in the development of a safe Android app ecosystem. The categorization of malware families may be used to improve the efficiency of the malware detection process as well as to systematically identify malicious trends. In this study, we proposed a modified ResNeXt model by embedding a new regularization technique to improve the classification task. In addition, we present a comprehensive evaluation of the Android malware classification and detection using our modified ResNeXt. The nonintuitive malware’s features are converted into fingerprint images in order to extract the rich information from the input data. In addition, we applied fine-tuned deep learning (DL) based on the convolutional neural network (CNN) on the visualized malware samples to automatically obtain the discriminatory features that separate normal from malicious data. Using DL techniques not only avoids the domain expert costs but also eliminates the frequent need for the feature engineering methods. Furthermore, we evaluated the effectiveness of the modified ResNeXt model in the classification process by testing a total of fifteen different combinations of the Android malware image sections on the Drebin dataset. In this study, we only use grayscale malware images from a modified ResNeXt to analyze the malware samples. The experimental results show that the modified ResNeXt successfully achieved an accuracy of 98.25% using Android certificates only. Furthermore, we undertook extensive trials on the dataset in order to confirm the efficacy of our methodology, and we compared our approach with several existing methods. Finally, this article reveals the evaluation of different models and a much more precise option for malware identification.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detecting Android Malware with Convolutional Neural Networks and Hilbert Space-Filling Curves;SN Computer Science;2024-08-22

2. Novel nature-inspired optimization approach-based svm for identifying the android malicious data;Multimedia Tools and Applications;2024-02-08

3. PE-FedAvg: A Privacy-Enhanced Federated Learning for Distributed Android Malware Detection;2023 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom);2023-12-21

4. Hybrid Multimodal Machine Learning Driven Android Malware Recognition and Classification Model;2023 7th International Conference on Electronics, Communication and Aerospace Technology (ICECA);2023-11-22

5. Efficient IoT Malware Detection Using Convolution Neural Network and View-Invariant Block;2023 18th International Conference on Intelligent Systems and Knowledge Engineering (ISKE);2023-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3