Bistatic ISAR Sparse Imaging Method for High-Speed Moving Target Based on Dechirping Processing

Author:

Zeng Chuangzhan1ORCID,Zhu Weigang1,Jia Xin1

Affiliation:

1. Space Engineering University, Beijing 101416, China

Abstract

Bistatic inverse synthetic aperture radar (ISAR) can increase the probability of tracking the high-speed target and provide more angle information than monostatic ISAR. However, bistatic ISAR suffers from a serious defocusing problem, resulting from the high-speed motion. Furthermore, the inherent geometry distortion and calibration problems make bistatic ISAR (B-ISAR) imaging more complex. In response to these problems, we propose a bistatic ISAR imaging method for high-speed moving target with geometric distortion correction and calibration based on dechirping processing. At first, based on the motion decomposition idea, the B-ISAR echo model of the high-speed moving target is established. Then, by analyzing the imaging mechanism of the Range-Doppler algorithm (RDA), we eliminate the phase items influencing the imaging quality with speed compensation and Doppler compensation. After that, the analytic formula of the geometric distortion factor and calibration factor are deduced, which helps transform the geometric correction and calibration problem into a parameter estimation problem. Finally, with the sparsity of the scattering points, the required parameters are solved using the expectation maximization (EM) algorithm based on the maximum a posteriori probability criterion. With the estimated parameters, a clear B-ISAR image of a high-speed moving target with geometric correction and calibration is obtained. The simulations show that the proposed method has a better resolution and simultaneously attains geometric correction and calibration of the image.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3