Analysis of Confined Jet Impingement in Converging Annular Microchannel Heat Sinks

Author:

Mashhadi Keshtiban Mohsen1,Zabetian Targhi Mohammad1ORCID,Heyhat Mohammad Mahdi1

Affiliation:

1. Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

Jet impingement cooling is deemed an excellent choice for the thermal management of high-power electronics. However, high-pressure drop penalties and low local heat transfer coefficients in regions far from the jet zone are its drawbacks. Although it is reported that recirculation areas appear because of the entrainment, the effects of recirculation size on thermal behavior are not understood well enough. Here, jet impingement heat sinks with converging annular channels are employed in a numerical investigation to minimize the adverse cooling effects associated with an impinging jet in a microchannel. The realizable kε turbulent model is used for modeling thermal and turbulent flow fields (Re=5,000 to 25,000). It was found that the different flow recirculation zones in small scales are responsible for the enhanced heat transfer rate. While the thermal performance of a converging wall jet impingement heat sink is higher than its flat wall counterpart at low Re numbers, the thermal performance results are in favor of the flat wall jet impingement heat sink at high Re numbers. The flow recirculation area shrinks in converging channels at high Re numbers, thereby deteriorating the thermal performance of the converging channel compared with a flat wall jet heat sink. Also, it was found that employing steeper converging channels shrinks the flow recirculation region, resulting in up to 59% lower pressure drops at Re=25,000. The present study examines the role of flow recirculation at different Re numbers on the thermohydraulic performance of jet impingement converging annular heat sinks.

Funder

Iran National Science Foundation

Publisher

Hindawi Limited

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3