Affiliation:
1. College of Computer and Information Science, Chongqing Normal University, Chongqing, China
Abstract
Emotion recognition is a research hotspot in the field of artificial intelligence. If the human-computer interaction system can sense human emotion and express emotion, it will make the interaction between the robot and human more natural. In this paper, a multimodal emotion recognition model based on many-objective optimization algorithm is proposed for the first time. The model integrates voice information and facial information and can simultaneously optimize the accuracy and uniformity of recognition. This paper compares the emotion recognition algorithm based on many-objective algorithm optimization with the single-modal emotion recognition model proposed in this paper and the ISMS_ALA model proposed by recent related research. The experimental results show that compared with the single-mode emotion recognition, the proposed model has a great improvement in each evaluation index. At the same time, the accuracy of emotion recognition is 2.88% higher than that of the ISMS_ALA model. The experimental results show that the many-objective optimization algorithm can effectively improve the performance of the multimodal emotion recognition model.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献