Affiliation:
1. School of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2. Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing 210003, China
Abstract
Due to the lack of trusted third parties as guarantees in peer-to-peer (P2P) networks, how to ensure trusted transactions between peers has become a research hotspot. However, the open and distributed characteristics of P2P networks have brought challenges to network security, and there are problems such as node fraud and unavailability of services in the network. To solve the problem of how to select trusted transaction peers in P2P groups, a new trust model, GT-Bidding, is proposed in this paper. This model follows the bidding process of human society. First, each service peer applies for a group of guarantee peers and carries out credit mortgages for this service. Second, based on the entropy and TOPSIS method (Technology for Order Preference by Similarity to an Ideal Solution) approaching the ideal solution, a set of ideal trading sequences is selected. Then, the transaction impact function is used to assign weights to the selected guarantee peers and service nodes, respectively; thus, the comprehensive trust of each service node can be calculated. Finally, the service peer is verified using feedback based on the specific confidence level, which encourages the reputation of the service and its guarantee peers to update. Experiments show that GT-Bidding improves the successful transaction rate and resists complex attacks.
Funder
National Natural Science Foundation of China
Subject
Computer Networks and Communications,Information Systems
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Trustworthy decentralization based on blockchain tools for social network architectures;Social Network Analysis and Mining;2024-05-10
2. Research on Supply Chain Traceability System Based on Semantic Multi-Blockchain and Pre-OnChain Data Verification;2023 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics);2023-12-17
3. Contractor Recommendation Model Using Credit Networking and Collaborative Filtering;Buildings;2022-11-22