A Consensus-Based Distributed Two-Layer Control Strategy with Predictive Compensation for Islanded Microgrid CPS against DoS Attack

Author:

Liu Xinrui1ORCID,Hou Min1ORCID,Yang Jianjun2ORCID,Sun Yufei1ORCID

Affiliation:

1. College of Information Science and Engineering, Northeastern University, Shenyang, China

2. State Grid Anhui Electric Power Company, Ma’anshan Power Supply Company, Ma'anshan, China

Abstract

Summary.Aiming at the problems of insufficient scalability and slow response speed of the traditional three-layer control structure based on the time scale, this study proposes a distributed two-layer control structure. The primary control uses traditional power-frequency droop control, and the second-level control adopts a consensus protocol to simultaneously achieve the goals of frequency synchronization, frequency non-difference, and power optimization in a distributed manner, which can effectively improve the performance of microgrid frequency adjustment and power optimization. The cyber layer of the AC microgrid cyber-physical system (CPS) is extremely vulnerable to denial-of-service (DoS) attacks, resulting in the inability to achieve control objectives. For this reason, this paper designs a consensus algorithm based on event-triggered and a predictive compensation control link that combines empirical mode decomposition (EMD) and extreme learning machine (ELM) on the basis of the two-layer control structure. Finally, a 4-node islanded microgrid simulation example is used to verify the effectiveness of the proposed strategy. The simulation results show that the two-layer control strategy can achieve microgrid frequency recovery and power optimization while effectively responding to different degrees of DoS attacks.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3