Short-Term High-NaCl Dietary Intake Changes Leukocyte Expression of VLA-4, LFA-1, and Mac-1 Integrins in Both Healthy Humans and Sprague-Dawley Rats: A Comparative Study

Author:

Mihalj Martina12ORCID,Matić Anita1,Mihaljević Zrinka1ORCID,Barić Lidija1ORCID,Stupin Ana13ORCID,Drenjančević Ines1ORCID

Affiliation:

1. Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia

2. Department of Dermatology and Venereology University Hospital Osijek, Osijek, Croatia

3. Department of Pathophysiology, Physiology, and Immunology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia

Abstract

This study is aimed at assessing the effects of a short-term high-salt (HS) diet on the peripheral blood leukocyte (PBL) activation status in healthy rats and young human individuals. Distribution of PBL subpopulations and surface expression of integrins were determined using flow cytometry in 36 men and women on a 7-day low-salt diet (<3.2 g salt/day) immediately followed by a 7-day HS diet (~14 g salt/day) or in Sprague-Dawley (SD) rats (n=24) on a 0.4% NaCl diet (aLS group) or a 4% NaCl diet (aHS group) for 7 days. The aHS group presented with an increased frequency of granulocytes, while the frequency of lymphocytes was reduced. Although in humans HS diet reduced the expression of CD11b(act) integrin on lymphocytes, the frequency of CD11b(act)-bearing cells among all PBL subsets was increased. The aHS group of rats exhibited increased expression of total CD11b/c in granulocytes and CD3 lymphocytes. The expression of CD11a was significantly reduced in all PBL subsets from human subjects and increased in the aHS group. CD49d expression on all PBL subsets was significantly decreased in both humans and rats. In human subjects, we found reduced frequencies of intermediate monocytes accompanied by a reciprocal increase in classical monocytes. Present results suggest that a short-term HS diet can alter leukocytes’ activation status and promote vascular low-grade inflammation.

Funder

Hrvatska Zaklada za Znanost

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3