Feature Analysis on Mixed Traffic Flow of Manually Driven and Autonomous Vehicles Based on Cellular Automata

Author:

Hu Xinghua1ORCID,Huang Mengyu1ORCID,Guo Jianpu2

Affiliation:

1. School of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China

2. Chongqing Productivity Promotion Center, Chongqing 401147, China

Abstract

This paper attempts to disclose the features of the mixed traffic flow of manually driven vehicles (MVs) and autonomous vehicles (AVs). Considering dynamic headway, the mixed traffic flow was modelled based on the improved single-land cellular automata (CA) traffic flow model (DHD) proposed by Zhang Ningxi. The established CA model was adopted to obtain the maximum flow of the mixed traffic flow and was analyzed under different proportions of AVs. On this basis, the features of the mixed traffic flow were summarized. The main results are as follows: the proportion of AVs has a significant impact on the mixed traffic flow; when the proportion reached 0.6, the flow of the whole lane was twice that of the MV traffic flow. At a low density, the AV proportion has an obvious influence on mixed traffic flow. At a high density, the mixed traffic flow changed very little, as the AV proportion increased from 0 to 5. The reason is that the flow of the whole lane is constrained by the fact that MVs cannot move faster. However, when the AV proportion reached 0.8, the flow of the whole lane became three times that at the proportion of 0.6. At the speed of 126 km/h, the flow rate was 2.5 times the speed limit of 54 km/h. The findings lay a theoretical basis for the modelling of multilane mixed traffic flow.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3