Improving Efficiency of Evaporated Cu2ZnSnS4Thin Film Solar Cells by a Thin Ag Intermediate Layer between Absorber and Back Contact

Author:

Cui Hongtao1,Lee Chang-Yeh1,Li Wei1,Liu Xiaolei1,Wen Xiaoming1,Hao Xiaojing1

Affiliation:

1. School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia

Abstract

A 20 nm Ag coating on Mo back contact was adopted to improve the back contact of evaporated Cu2ZnSnS4(CZTS) solar cells. The Ag layer helped reduce the thickness of MoS2which improves fill factor (FF) significantly; additionally, it reduced secondary phases ZnS and SnS2−x, which may help carrier transport; it was also involved in the doping of the absorber layer, which compensated the intrinsic p-type doping and therefore drags down the doping level. The doping involvement may enlarge the depletion region and improve lifetime of the absorber, which led to enhancing open circuit voltage (VOC), short circuit current density (JSC), and efficiency significantly. However, it degrades the crystallinity of the material slightly.

Funder

Australian Renewable Energy Agency

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3