Manufacture and Characterization of Heat-Resistant and Heat-Insulating New Composites Based on Resol Resin–Carbon Fibers–Perlite for the Built Heritage Protection

Author:

Soupionis George1ORCID,Zoumpoulakis Loukas1ORCID

Affiliation:

1. Department of Chemical Engineering, National Technical University of Athens, Athens 9 Heroon Polytechniou Str., Zografou Campus, 157 73, Greece

Abstract

Composite materials were created for usage as reinforcement and to protect the building envelope based on today’s global conditions such as climate change. Composite materials were manufactured using phenol-formaldehyde resin (case of resol) as a matrix, carbon fiber as reinforcement (7.5%v/v), and perlite (10%w/w) as a low thermal conductivity component, to combine high mechanical properties with good heat resistance and good thermal insulation properties. The structure of these new materials was examined through scanning electron microscopy (SEM) and elemental analysis (SEM-EDS). The addition of perlite (10%w/w) in the resite matrix (without fibers) increased the flexural and shear strength of the composite materials. On the other hand, the composite materials with fiber reinforcement show that the perlite reduces the flexural and shear strength due to the additional interfaces which were created. During heat treatment at 473 K, carbon fibers had the smallest weight loss followed by perlite while the resite matrix (i.e., the cured resol) shows the greatest weight loss. It is noted that the role of perlite is to stabilize the mass of the resite matrix during heat treatment. The composite material with carbon fibers and perlite is a heat-resistant material with only 2% weight loss at 473 K for 1 hour and shows a low coefficient of thermal conductivity, making it a new material in the direction of heat-insulating materials.

Publisher

Hindawi Limited

Subject

Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3