An Improved Parallel Inverse Design Method of EMU Wheel Profile from Wheel Flange Wear Viewpoint

Author:

Ren Wenjuan12ORCID,Li Li1ORCID,Cui Dabin1ORCID,Chen Guangxiong1

Affiliation:

1. Southwest Jiaotong University, Chengdu 610031, Sichuan, China

2. Sichuan College of Architectural Technology, Chengdu 610399, China

Abstract

An improved parallel inverse design method is proposed for wheel profile optimization. The dominant merit of this method is the ability to automatically search the target performance curve and obtain the optimized profile without artificial experience. With the help of vehicle system dynamic theory, an EMU model has been established in Simpack, and the dynamic performance is calculated with two profiles, i.e., optimization profile and original profile. The contact and mechanical characters are analyzed by Hertz’s theory, Kalker global algorithm, and CONTACT program. It is found that the rolling radius difference (RRD) with the optimization profile is higher than the original one, especially when the lateral displacement is greater than 3 mm. The creep force density with the optimization profile is significant with a wheelset displacement of 6∼9 mm. Compared with the original one, the distribution of contact points with the optimization profile is more uniform, and the contact position is more biased towards the root of the wheel flange. It means the optimization profile can provide higher RRD value and creep force with large lateral displacement, which is beneficial for reducing wheel flange wear. The dynamic simulation indicates that the optimization profile can help reduce the wheel flange force and wheel flange wear in a sharp curve. Meanwhile, the dynamic behaviors and wheel tread wear on a tangent track or a large curved track are also favorable with the optimization profile.

Funder

Sichuan Science and Technology Program

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3