Effect of Pretreatment and High Hydrostatic Pressure on Soluble Dietary Fiber in Lotus Root Residues

Author:

Gu Yanyang12ORCID,Niu Liying2ORCID,Song Jiangfeng2ORCID,Liu Chunju2ORCID,Zhang Zhongyuan2,Liu Chunquan2ORCID,Li Dajing2ORCID,Xiao Lixia1ORCID

Affiliation:

1. College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China

2. Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

Abstract

High hydrostatic pressure (HHP) can enhance the physicochemical properties of soluble dietary fiber (SDF) from fruit and vegetable residues including hydration properties, emulsibility, and rheological properties, while the pretreatment methods such as solid-water suspension status are ignored all along. Here, three groups of lotus root residue (LRR) for HHP treatment (400 MPa, 15 min) were prepared: the fresh lotus root residue (FLRR), FLRR mixed with water (FLRR + W), and dried FLRR suspended in water at the same solid/water level with FLRR + W (DLRR + W). As a control, non-HHP-treated FLRR was tested. Results showed that FLRR + W obtained the highest SDF yield and presented a honeycomb structure which was not observed in other LRR samples. In addition, properties of SDF extract from FLRR + W changed most significantly, including not only the enhancement of SDF yield, the improvement of hydration properties, and the reduction of molecular weight but also the increase of thermal and rheological stability. Principal component analysis (PCA) profile illustrated that the difference of LRR-water system contributed 27.6% to the SDF physicochemical changes, and SDF from DLRR + W distinguished it from the other samples with mannose, ribose, and glucuronic acid, indicating that the drying procedure also played a role in the HHP treatment focusing on the sugar constitution. Therefore, the solid-water suspension status is a noteworthy issue before HHP treatment aiming at SDF modification.

Funder

Primary Research and Development Plan of Jiangsu Provinc

Publisher

Hindawi Limited

Subject

Safety, Risk, Reliability and Quality,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3