Agglomerative Hierarchical Clustering Methodology to Restore Power System considering Reactive Power Balance and Stability Factor Analysis

Author:

Khadka Srijan1ORCID,Wagle Abhishek1,Dhakal Bibek1,Gautam Rupesh1ORCID,Nepal Tajana23,Shrestha Ashish3,Gonzalez-Longatt Francisco4

Affiliation:

1. Department of Electrical Engineering, Khwopa College of Engineering, Bhaktapur 44800, Nepal

2. Department of Electrical and Electronics Engineering, Kathmandu University, Dhulikhel 45210, Nepal

3. Department of Electrical Engineering, Information Technology and Cybernetics, University of South-Eastern Norway, Porsgrunn N-3918, Norway

4. Centre for Renewable Energy Systems Technology (CREST), Loughborough University, Loughborough LE11 2HN, UK

Abstract

Despite there are significant advancements in modern power systems, blackouts remain a potential risk, necessitating efficient restoration strategies. This paper introduces an innovative concept for power system restoration, focusing on balancing active and reactive power while ensuring voltage stability. For instance, this paper employs an agglomerative clustering technique, which partitions the power system into segments with balanced reactive power, facilitating swift restoration postblackout. Central to this methodology is the use of the line stability factor, which assesses the voltage stability of individual lines, identifying the system’s stronger and weaker sections based on voltage stability levels. This paper demonstrates the effectiveness of the proposed methodology through case study analysis, comparing voltage stability levels across agglomerative clusters and their geographical locations. The power system is divided into two stable partitions, considering the number of black-start generators, available reactive power, and voltage stability levels. This partitioning reveals that the clusters formed by the agglomerative method are inherently stable, suggesting enhanced system stability, dependability, and availability during the restoration phase following a blackout. In addition, this paper discusses the potential causes of blackouts, offering insights into their prevention, and finishes with a novel clustering methodology for power systems, considering reactive power and voltage stability. This method facilitates the parallel restoration of the system’s independent partitions, significantly reducing restoration time; it addresses critical challenges and outcomes, underscoring the methodology’s potential to revolutionize blackout recovery processes in modern power systems.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3