Rossby Solitary Waves Generated by Wavy Bottom in Stratified Fluids

Author:

Yang Hongwei1,Yin Baoshu23,Zhong Bo4,Dong Huanhe1

Affiliation:

1. College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

2. Institute of Oceanology, China Academy of Sciences, Qingdao, Shandong 266071, China

3. Key Laboratory of Ocean Circulation and Wave, Chinese Academy of Sciences, Qingdao, Shandong 266071, China

4. Faculty of Science, Beijing Jiaotong University, Beijing 100044, China

Abstract

Rossby solitary waves generated by a wavy bottom are studied in stratified fluids. From the quasigeostrophic vorticity equation including a wavy bottom and dissipation, by employing perturbation expansions and stretching transforms of time and space, a forced KdV-ILW-Burgers equation is derived through a new scale analysis, modelling the evolution of Rossby solitary waves. By analysis and calculation, based on the conservation relations of the KdV-ILW-Burgers equation, the conservation laws of Rossby solitary waves are obtained. Finally, the numerical solutions of the forced KdV-ILW-Burgers equation are given by using the pseudospectral method, and the evolutional feature of solitary waves generated by a wavy bottom is discussed. The results show that, besides the solitary waves, an additional harmonic wave appears in the wavy bottom forcing region, and they propagate independently and do not interfere with each other. Furthermore, the wavy bottom forcing can prevent wave breaking to some extent. Meanwhile, the effect of dissipation and detuning parameter on Rossby solitary waves is also studied. Research on the wavy bottom effect on the Rossby solitary waves dynamics is of interest in analytical geophysicalfluid dynamics.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3