Coupling of Level Set and Volume of Fluid Methods for Simulations of Transient Internal Flow Field in Solid Rocket Motors

Author:

Zhang Ze1ORCID,Gao Feng1,Lv Rui1,Gao Yang1

Affiliation:

1. Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China

Abstract

This study entails the analysis of the working performance of solid rocket motors (SRM), featuring the essential element of internal ballistic analysis. Therefore, the internal flow field under the condition of burning surface regression needs to be calculated. The boundary of the internal flow field of the SRM moves with the combustion of the propellant; therefore, it is necessary to accurately track the mobile interface to provide boundary conditions for the flow field calculation. The coupling of the level set method and the volume fraction method is utilized to track the burning surface, and the porous media model is used to divide the fluid and solid calculation domains. The interface between the two calculation domains is used to characterize the burning surface, and then, the area of the burning surface is obtained by solving the area of the interface. The calculation and analysis are carried out for SRM with tubular charge and star charge. The results verify that the calculation model can accurately calculate the transient internal flow field of SRM under the condition of burning surface regression.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Reference21 articles.

1. Modeling of combustion and ignition of solid-propellant ingredients

2. Development of a hybrid method in a 3-D numerical burn-back analysis for solid propellant grains

3. Computer aided design of propellant grains for solid rocket motors;F. T. Bao;Journal of Solid Rocket Technology,1994

4. Computer aided design and burning simulation analysis of solid rocket motor grains;W. P. Tian;Journal of Solid Rocket Technology,1993

5. The solid modeling technology and the grain-burning-area calculation;X. R. Yan;Journal of Solid Rocket Technology,2003

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3