A Novel Neutrosophic Method for Automatic Seed Point Selection in Thyroid Nodule Images

Author:

Haji S. O.1ORCID,Yousif R. Z.1

Affiliation:

1. Department of Physics, College of Science, Salahaddin University, Hawler, Iraq

Abstract

The thyroid nodule is one of the endocrine issues caused by an irregular cell development. This rate of survival can be improved by earlier nodule detection. Accordingly, the accurate recognition of the nodule is of the utmost importance in providing powerful results in building the survival rate. The reduction in the accuracy of manual or semiautomatic segmentation methods for thyroid nodule detection is due to many factors, basically, the lack of experience of the sonographer and latency of operation. Most lesion regions in ultrasound images are homogeneous. Therefore, the value of entropy in these regions is high compared to its neighbours. Based on this criterion, a novel procedure for automatically selecting the seed point in thyroid nodule images is proposed. The proposed system consists of three components: neutrosophic image enhancement and speckle reduction to reduce speckle noise and automatic seed selection algorithm extracted from the centre of candidate block in ultrasound thyroid images based on the principle that most of its Higher Order Spectra Entropies (HOSE) from Radon Transform (RT) at different angles are within the range between average and maximum entropies, and the region growing image segmentation is applied with the constant threshold. The performance of proposed automatic segmentation method is compared with other methods in terms of calculating, True Positive (TP) value (96.44 ± 3.01%), False Positive (FP) value (3.55 ± 1.45%), Dice Coefficient (DC) value (92.24 ± 6.47%), Similarity Index (SI) (80.57 ± 1.06%), and Hausdroff Distance (HD) (0.42 ± 0.24 pixels). The proposed system can be considered as an added value to the malignancy diagnosis in thyroid nodule by an endocrinologist.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning Empowering Diagnosis of Thyroid Nodule Malignancy through Ultrasound Imaging;2023 International Conference on Recent Advances in Science and Engineering Technology (ICRASET);2023-11-23

2. Deep Learning Based Fast Screening Approach on Ultrasound Images for Thyroid Nodules Diagnosis;Diagnostics;2021-11-26

3. Evaluation of Performance Metrics of Thyroid Segmentation by Deep Learning Technique;International Journal of Biology and Biomedical Engineering;2021-07-22

4. A new CNN architecture for efficient classification of ultrasound breast tumor images with activation map clustering based prediction validation;Medical & Biological Engineering & Computing;2021-04

5. NEUTROSOPHIC TEXTURE-REGION DIFFERENCE-BASED FUZZY c-MEANS CLUSTERING OF ULTRASOUND TUMOR IMAGES;Biomedical Engineering: Applications, Basis and Communications;2020-11-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3