A Finite Difference Method for Solving Unsteady Fractional Oldroyd-B Viscoelastic Flow Based on Caputo Derivative

Author:

Wang Fang1ORCID,Wang Yu2ORCID

Affiliation:

1. School of Civil Engineering, North Minzu University, China

2. School of Aeronautics, Northwestern Polytechnical University, China

Abstract

In this paper, the effect of a fractional constitutive model on the rheological properties of fluids and its application in numerical simulation are investigated, which is important to characterize the rheological properties of fluids and physical characteristics of materials more accurately. Based on this consideration, numerical simulation and analytical study of unsteady fractional Oldroyd-B viscoelastic flow are carried out. In order to improve the degree of accuracy, the mixed partial derivative including the fractional derivative in the differential equation is converted effectively by integrating by parts instead of by direct discretization. Then, the stability, convergence, and unique solvability of the difference scheme are verified. The validity of the finite difference method is tested by making comparisons with analytical solutions for two kinds of fractional Oldroyd-B viscoelastic flow. Numerical results obtained using the finite difference method are in good agreement with analytical solutions obtained via the variable separation method. Viscoelastic characteristics of the unsteady Poiseuille flow are similar to the second-order fluid or integer-order Oldroyd-B fluid when the parameter is close to 0 or to 1. Oscillation characteristics of fractional viscoelastic oscillatory flow are similar to those of the classical viscoelastic fluid under the same condition. Compared with the previous research, the present work studies the rheological properties of fluids with the finite difference method, and the application of fractional constitutive models in describing the rheological properties of fluids is developed. Meanwhile, more cases reflecting the fractional-order characteristics are given. The present method can accurately capture the flow characteristics of unsteady fractional Oldroyd-B viscoelastic fluid and is applicable for the generalized fractional fluid.

Funder

National Key Laboratory of Science and Technology on Aerodynamic Design and Research

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3