Research on the Grey Verhulst Model Based on Particle Swarm Optimization and Markov Chain to Predict the Settlement of High Fill Subgrade in Xiangli Expressway

Author:

Liu Haiming1ORCID,Guo Wei1ORCID,Zhang Chao2ORCID,Yang Huaihao1ORCID

Affiliation:

1. Yunnan Key Laboratory of Disaster Reduction in Civil Engineering, Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China

2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

Abstract

It is of vital significance to accurately forecast the settlement of high fill subgrade, which is the foundation for disaster prevention and treatment of subgrade. According to the monitoring data of high fill subgrade, a novel model, called PSOMGVM model, based on particle swarm optimization (PSO) and Markov chain is proposed. Firstly, the typical characteristics of settlement curve are analyzed from the aspect of geomechanics theory and based on the grey theory, the grey Verhulst model (GVM) with unequal time-interval is proposed. Then, according to the theory of Markov chain, the grey Verhulst model is built to revise the relative residuals of the GVM, in which the effects of volatility characteristics can be considered. Finally, the PSOMGVM model based on PSO algorithm and Markov chain is set up, which whitens the parameters of the grey interval. In order to demonstrate the fitness and the ability of the proposed model, five competing models are introduced to predict the settlement of the high fill subgrade of Xiangli Expressway in Yunnan Province. Through the analysis of APE, MAPE, and RMSE, it states that the accuracy and performance of the PSOMGVM model outperform the other five competing models for simulative and predictive periods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3