Analytical Design and Optimization of an Automotive Rubber Bushing

Author:

Rivas-Torres Jonathan1,Tudon-Martinez Juan C.1ORCID,Lozoya-Santos Jorge de-J.2,Ramirez-Mendoza Ricardo A.2,Spaggiari Andrea3ORCID

Affiliation:

1. Universidad de Monterrey, Ignacio Morones Prieto 4500, Jesús M. Garza, 66238 San Pedro Garza García, NL, Mexico

2. Tecnológico de Monterrey, Av. E. Garza Sada, Col. Tecnológico, 64849 Monterrey, NL, Mexico

3. Università degli Studi di Modena e Reggio Emilia, Via Giovanni Amendola, 2, 42122 Reggio Emilia, Italy

Abstract

The ride comfort, driving safety, and handling of the vehicle should be designed and tuned to achieve the expectations defined in the company’s design. The ideal method of tuning the characteristics of the vehicle is to modify the bushings and mounts used in the chassis system. To deal with the noise, vibration and harshness on automobiles, elastomeric materials in mounts and bushings are determinant in the automotive components design, particularly those related to the suspension system. For most designs, stiffness is a key design parameter. Determination of stiffness is often necessary in order to ensure that excessive forces or deflections do not occur. Many companies use trial and error method to meet the requirements of stiffness curves. Optimization algorithms are an effective solution to this type of design problems. This paper presents a simulation-based methodology to design an automotive bushing with specific characteristic curves. Using an optimum design formulation, a mathematical model is proposed to design and then optimize structural parameters using a genetic algorithm. To validate the resulting data, a finite element analysis (FEA) is carried out with the optimized values. At the end, results between optimization, FEA, and characteristic curves are compared and discussed to establish the correlation among them.

Funder

Universidad de Monterrey

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3