An Association Rule Mining-Based Method for Revealing the Impact of Operational Sequence on Nuclear Power Plants Operating

Author:

He Yuxuan1ORCID,Song Jian1ORCID,Shi Shaoke1,Lian Haibo1,He Jiangyang1,Yu Ren2ORCID,Liu Tete1,Sun Bin1,Yuan Jiangtao1,Hu Yingbin1

Affiliation:

1. Navy Submarine Academy, Qingdao, Shandong 266000, China

2. Naval University of Engineering, Wuhan, Hubei 430033, China

Abstract

The operations of the operators are important for nuclear safety, but conventional operating experience feedback and common data-driven methods make it difficult to explicitly find valuable information hidden in these operational sequences that can help the operator to provide advice at the operational level. During the nuclear power plant (NPP) operation, a large amount of historical operating data is accumulated, which records the operational sequences of the operators and the state parameters of equipment. Therefore, this paper proposes the use of association rule techniques to mine the NPP operating data to discover the operational characteristics of operators and reveal their possible impact on the NPP operation. This work helps to improve the operational performance of operators and prevent human-factor events. To this end, the concept of state switching values for describing the operating states of NPPs is proposed to enable the proposed method to be adapted to different practical application scenarios. A sequence segmentation method is proposed to be able to transform historical NPP operating data into a sequence data set for association rule mining. Furthermore, an ensemble algorithm based on sequence pattern mining and sequence rule mining and its postprocessing method are designed. The empirical study was carried out using 20 batches of historical operating data of the cold start-up. A total of 164 original association rules are generated using the proposed method and were analyzed by experts. The recommendations were made for 4 different cases that would improve the operational performance of the operators.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3